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ABSTRACT: The covered encoding scheme for the TCAM based implementation of the Aho-corasick 

multipattern matching algorithm is used in Network Intrusion detection Systems (NIDS).The information of the 

failure transitions of the Aho-corasick Non deterministic Finite state Automata (NFA) is implicitly captured in 

the covered state encoding and the failure transitions are completely eliminated, the Aho-Corasick NFA can be 

implemented on a TCAM with smaller number of entries than other schemes.  The modified Aho-Corasick NFA 

for multicharacter processing, which can be implemented on TCAM using the covered state encoding. The 

implementation of modified Aho-Corasick NFA using the Covered state encoding is superior to other schemes in 

both Memory requirements and lookup speed.. For Snort rule sets, the new algorithm achieves 21% of memory 

reduction compared with the traditional Aho–Corasick algorithm and can gain 24% of memory reduction by 
integrating the approach to The bit-split algorithm which is the state-of-the-Art memory-based approach. 

 

INDEXTERMS:  Finite state Automata, TCAM, Multipattern matching.(keywords) 

 

I. INTRODUCTION 
For the past few years, a tremendous increase in the frequency and sophistication of attacks on the 

Internet. There have been notorious viruses/worms like Code Red, Nimda and Slammer etc. By exploiting the 

security flaws in operating systems, underlying network protocols and different software implementations, 
attackers bring down significant parts of the Internet in a matter of hours using distributed co-ordinated attacks 

aided with an ever increasing population of zombie machines.  

With increased growth in malicious network activity, Network Intrusion Detection Systems (NIDS) are 

being devised and deployed to detect the presence of any malicious or suspicious content in packet data. 

Traditional software-based NIDS architecture fails to keep up with the throughput of high-speed networks 

because of the large number of patterns and complete payload inspection of packets. This has led to hardware-

based schemes for multipattern matching.  

To operate SNORT-like intrusion detection systems at multi-gigabit rates using hardware acceleration, 

one possibility is to use Ternary Content Addressable Memories (TCAM). TCAMs are widely used for IP 

header based processing such as longest prefix  match. TCAMs can also be used effectively for the pattern 

matching functions needed in intrusion detection systems.  
Ternary Content Addressable Memory (TCAM) is a type of memory that can perform parallel search at 

high speeds. A TCAM consists of a set of entries. The top entry of the TCAM has the smallest index and the 

bottom entry has the largest. Each entry is a bit vector of cells, where every cell can store one bit. Therefore, a 

TCAM entry can be used to store a string. A TCAM works as follows: given an input string, it compares this 

string against all entries in its memory in parallel, and reports one entry that matches the input. 

High-speed pattern matching is required for a wide variety of other equally critical applications, 

including scanning through large data-sets (logs) for data mining operations, low latency XML switching, DNA 

sequence matching etc. Of greater interest is the use of patternMatching in next-generation network monitoring 

applications, including but not limited to, stateful packet inspection for QoS management, VOIP filtering, 

bandwidth metering, optimalcache replication etc. However, we limit our focus here to network-based IDS/IPS 

for virus/worm detection. 
 

II. AHO CORASICK DETERMINISTIC FINITE STATE AUTOMATA 
 In the DFA, the dotted lines represent transitions, called by cross transitions, which are newly added by 

eliminating failure transitions. Shaded states represent the pattern matching states called output states. The 

trivial transitions going to the initial state are omitted in the figure. 
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Figure 1.Aho-Corasick Finite Automata For DFA 

 

The finite state machines for the set of patterns {he, she, his, hers} built by the AC algorithm is shown 

in Figure 4.1. The pattern matching can be performed using either the NFA or the DFA. To match a string, one 

starts from the initial state (usually 0). If a goto transition or a cross transition is matched with an input in the 

current state, the current state is moved along the matched transition. Otherwise, for a DFA-based matching, the 

current state goes back to the initial state  and the matching process repeats for the next state.The AC DFA 

requires a large amount of memory in a straightforward RAM-based implementation that keeps a table of 
pointers to next states for every input since the table contains also trivial transitions which go back to the initial 

state. 

 

III.  TCAM BASED HARDWARE ARCHITECTURE 
 The architecture shown in Figure 2 consists of a TCAM, SRAM, and a logic. Each TCAM entry 

represents a lookup key, which consists of current state and input, and has corresponding data, which is the next 

state, in the SRAM whose address is given by the TCAM output. Two registers current state and input are 

initialized to the state 0 and the start data of the input buffer, respectively. If there is a matching entry for the 

state and input value in the TCAM, the TCAM outputs the index of the matching entry and then the SRAM 
outputs the next state data located in the corresponding location. Because a TCAM has “don’t care” bits, 

multiple entries can be simultaneously matched and when this is the case, the index of the first matched entry is 

outputted. If there is no such match in the TCAM, the next state is the initial state.  

 

 
Figure 2. TCAM Based Hardware Architecture 

 

The architecture consists of a TCAM, SRAM, and a logic. Each TCAM entry represents a lookup key, 

which consists of current state and input, and has corresponding data, which is the next state, in the SRAM 

whose address is given by the TCAM output. Two registers current state and input are initialized to the state 0 

and the start data of the input buffer, respectively. If there is a matching entry for the state and input value in the 

TCAM, the TCAM outputs the index of the matching entry and then the SRAM outputs the next state data 

located in the corresponding location. Because a TCAM has “don’t care” bits, multiple entries can be 
simultaneously matched and when this is the case, the index of the first matched entry is outputted. If there is no 

such match in the TCAM, the next state is the initial state.  

At every state transition, an input is advanced to the next input and the next state value is stored into 

the current state register. Each TCAM entry represents a transition in the state machine. The number of TCAM 

entries is equal to the number of transitions and independent of the number of states. For a transition, g(s, i) = t 

where s is a current state, i is an input, and t is the next state, we will simply represent a pair of TCAM and 

SRAM entry by the combined form (s, i|t). 

 

IV.  MEMORY OPTIMIZATION 
The next transitions to states at higher depths in the state machine could be reduced. If we suffix the 

state id representation of every state by the last character that caused a goto transition into that state, then we can 

remove the next transitions to states at depth two in the state machine. Hence, a state at depth one is represented 

as “i1,….., i8” where i1,…., i8 is the binary representation of the input character that causes a goto transition 

from the root node to that state. This state id representation would then match all those states in the state 

machine that is reached by a go to transition on character i1,….., i8.,from some other state. Thus all next 

transitions to states at depth two in the state machine are subsumed by the goto transition to depth two state, 

along similar lines of argument as above, and hence can be eliminated from the TCAM. 
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V. SEARCH SPEED ENHANCEMENT 
Search Speed Enhancement  is functionally similar to the state machine in Figure 2 except that the 

transitions are now on four characters each. We call this state Machine, a multi-character (compressed) state 

machine. The TCAM entries now contain four characters in the input field requiring 32 bits for their 
representation, and the input pointer is now incremented by 4 for every state transition. Hence we get a speedup 

of upto four, provided the input bus to the TCAM is wide enough. 

 

VI.  TCAM/SRAM ENTRIES 
Each TCAM entry represents a transition in the state machine. The number of TCAM  entries is equal 

to the number of transitions and independent of the number of states. SRAM address is given by the TCAM 

output. So the TCAM/SRAM entries plays a major role. 

 

A. No Optimization 
The diagram showing the no optimization scheme is given as Table 1 

 

Table 1 TCAM / SRAM Entries for No Optimization 

In the entries with no optimization, the left entries are goto transitions in the NFA and the right entries 

are cross transitions. The entries marked as “X” are cross transitions eliminated when the depth of the state 

encoding is increased. The entries marked as “√” are goto transitions whose current state field is replaced with 

the stateincluding “don’t care” when the depth of the state encoding is increased. Note that the TCAM entries 

containing “don’t care” must be located in the last positions since they have the lowest priority.  

 

 
 

B. Alicherry’s Encoding 

A novel method called Compact DFA is used to compress the DFA entries in the TCAM-based 

implementation. Although Compact DFA is originated from essentially the same idea as Alicherry’s encoding 

which eliminates cross transitions by suffixing the state encoding by the prefix string from the root node to that 

state, it provides more efficient encoding scheme than Alicherry’s encoding by constructing the common suffix 

tree and encoding the states, and it eliminates all the cross transitions and it is shown in Table 4.2. Compact 

DFA state encoding is still nonoptimal and its building algorithms are more or less complex since the Compact 

DFA is built from AC DFA. 
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Table 2 TCAM / SRAM Entries for Alicherry’s Encoding  Alicherry's Encoding 

 
 

VII. AC NON DETERMINISTIC FINITE STATE AUTOMATA 
A proposed system is a new state encoding scheme in TCAM-based implementation of AC NFA. We 

can reduce the number of TCAM entries to the number of goto transitions in the NFA by fully utilizing the 

“don’t care” feature of TCAM using a covered  state encoding. 

 

 
Figure 3. Goto and Failure Transitions in NFA 

 

For an NFA-based matching, the current state is moved along its failure transition and the matching 

process repeats for the current input. The DFA examines each input only once while the NFA may examine each 

input several times along the failure transition path is shown in Figure 5.1. In matching a text string of length n, 

the DFA makes n state transitions and the NFA makes fewer than 2n state transitions. 

 

VIII. COVERED STATE ENCODING 
Since the AC NFA has a smaller number of transitions than the AC DFA, the NFA can be implemented 

with smaller TCAM entries than the DFA. The number of TCAM entriesin the NFA-based implementation is 

the sum of the number of goto transitions and the number of nontrivial failure transitions in the NFA. 

In the NFA-based architecture, 1-bit field F  indicating a failure transition is added in each SRAM 

entry. If an entry is associated with a failure transition, its F is 1 and its input field is “*”which can match with 

any input value. If the matched transition is a failure transition, or F= 1, an input is not advanced and current 

input is used again at the next matching. One character may be repeatedly processed along the states in the 

failure transition path until a non failure transition is matched (F= 0) or a state goes back to the initial state. The 

Table 3 shows the TCAM/SRAM entries in NFA. 
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If we exploit the “don’t care” feature of a TCAM, we can encode states so that a code covers some 

other codes. For example, code **** covers all of 4-bit codes and code 11**covers four codes 1100, 1101, 1110, 

and 1111. We call a code each bit of which consists of 0 or 1 by a unique code, and a code each bit of which 

consists of 0, 1, or “*” by a cover code. Since the next state field in the SRAM cannot store “*” it should be 

represented by a unique code. However, the current state field in the TCAM can store a cover code. 

The failure transition graph is a graph consisting of only failure transitions in the AC NFA. In a failure 

transition graph, the set of all the predecessors of a state s is denoted by PRED(s) and the set of all the 
successors of a state s is denoted by SUCC(s). Fig. 5.2  shows SUCC(s) and PRED(s)  for a state s in a failure 

transition graph. If current state fields of TCAM entries associated with each state t are replaced with a cover 

code to cover not only state t but also all its predecessors PRED (s), we can simultaneously examine all the 

entries of s and SUCC(s) for a current state s since s is a predecessor of SUCC(s) and the failure transition 

entries are not needed any longer. 

 

A. Covered State Encoding Algorithm 

An algorithm for performing the covered state encoding for the AC NFA consists of four stages: 

Step 1.  Construct a failure tree. 
Step 2.  Determine the size (or dimension) code of each state. 

Step 3.  Assign a unique code and each state. 

Step 4.  Build the TCAM entries. 

 

B. Evaluation of Covered State Encoding 

In the Fig. 5.4, the state transitions for the input sequence “shershiss” is shown. The initial state is 0. 

After processing three input characters “she”, the state becomes 5. Although there is no entry of state 5, the 

TCAM entry of state 2 (c _code= 100*) is matched with input r in state 5 (u _code= 1001) and the state becomes 

8. After processing  the following input sequence “shiss” from state 8, the state becomes 3. Boxes in Fig. 5.4  

represent the cases that an input is matched with the TCAM entry of a failure transition state of the current state. 

 

 
 

The Snort rule set version 2.8 and ClamAV version 0.96 antivirus signature are used  to evaluate the 

TCAM memory requirement of the covered state encoding. The Snort rule set has 5,169 patterns whose average 
length is 16.7 and ClamAV signatures have 30,385 patterns whose average length is 67.4. We compare the 

implementations of the AC DFAs using Alicherry’s encoding of depth m (denoted by DFA-m) and the Compact 

DFA with the implementation of the AC NFA using the covered state encoding (denoted by AC NFA-c).Let Tg 

and Tf be the number of goto transitions and the number of failure transitions in the AC NFA, respectively. In 

the AC NFA-c, the TCAM entries consist only goto transitions and the number of TCAM entries is T = Tg. The 

number of TCAM entries in the Compact DFA is the same as that in the AC NFA-c since the Compact DFA 

eliminates all the cross transitions. Let Tc,i, be the number of depth I transitions in the AC DFA. In the DFA-m, 

the number of TCAM entries is T = Tg +  where dmax is the maximum depth. 

 

 
Figure 5 Comparison of  the number of TCAM Entries 
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Figure 6  Comparison of  the TCAM Memory Requirements 

 

Fig. 5 shows the numbers of TCAM entries in various DFA-m (2≤m≤10) Compact DFA, and AC NFA-
c for the Snort rule set and ClamAV signatures. As m increases, the number of TCAM entries in DFA-m 

approaches that of in the DFA-m, the number of bits required for the state encoding is E = log2 S + 8(m - 1) bits 

where S is the number of states .In the AC NFA-c, the state code width is E= log2 S +δ where δ is the number of 

extra bits required in the covered state encoding and depends on the patterns. In the covered state encoding, the 

number of state bits E is equal to the number of states S at the worst case. A set of n strings {a1b1, a2a1b2,. . . , 

anan-1 . . . a1bn} where bi≠ bj if i≠j, is an example of the worst case. This case, however, is almost impossible for 

practical rule sets. The state code width in the Compact DFA is also represented by E= log2 S +δ, where δ is the 

number of extra bits required in the Compact DFA. In the AC NFA-c, the number of extra bits δ (0, 5) is much 

smaller than log2 S. In the Compact DFA, however, the extra bit width δ (18, 30) is comparable to log2 S. 

The width of a TCAM entry is W = E+ 8 since a TCAM entry consists of a current state and an 8-bit 

input data. The TCAM memory requirement is M = T .W = T . (E + 8)  bits. Thus, the TCAM memory 

requirements of AC NFA-c, CompactDFA, and DFA-mare given by following equations: 
 

Mcovered =Mcompact = Tg .(log2 S + δ+8)         (1) 

MDFA-m =Tg + T = Tg +   (log2 S +8(m -1)+ 8) (2) 

   

The SRAM memory requirement is T .E bits since an SRAM entry consists of the next state field. The 

DFA-1 is omitted in this figure due to its large value. This figure 5.6  shows that the TCAM memory 

requirement in the covered state encoding is much less than those in the other schemes. The code widths for 

Snort and ClamAV is shown in Table 5.3.In the Snort rule set, the TCAM memory requirement of DFA-m has 

the minimum value (=7.3 Mbit) when m = 7,which is 4.3 times of Mcovered  (=7.3 Mbit) and the ClamAV 

signatures have the minimum MDFA-m(=218 Mbit) when m =7, which is 3.3 times of Mcovered (= 66 Mbit). Mcovered 

is about 58 percent of Mcompact for both Snort and ClamAV.Thus, the TCAM memory requirement of AC NFA-c 

is the smallest. In the AC NFA-c, the memory utilization per character is 2.47 B/char for the Snort rule set and 

4.04 B/char for ClamAV  signatures.The commercially available TCAMs have the fixed entry widths which are 

multiples of a specific size D (either 36 or 40 bits). When the required TCAM entry width is W, the actual 
TCAM entry width is [W/ D).D. In the AC NFA-c, the actual TCAM entry widths are D for both Snort and 

ClamAV since the required entry widths are W = 17 þ +8 =25 for Snort and W = 26 + 8= 34 for ClamAV. In the 

DFAm (m - 3) and CompactDFA, the actual TCAM entry widths are 2D or more since the TCAM entry widths 

are larger than 40. Thus, the actual TCAM memory requirement in the AC NFA-c is also the smallest since the 

number of TCAM entries and the TCAM entry width in the AC NFA-c are smaller than in the other schemes 

. 

IX. MERGE _FSM 
The merg_FSM is a different machine from the original state machine but with a smaller number of 

states and transitions.A direct implementation of merg_FSM has a smaller memory than the original state 
machine in the memory architecture. Our objective is to modify the AC algorithm so that we can store only the 

state transition table of merg_FSM in memory while the overall system still functions correctly as the original 

AC state machine does. The overall architecture of state traversal machine is shown in Fig. 7. The new state 

traversal mechanism guides the state machine to traverse on the merg_FSM and provides correct results as the 

original AC state machine.  
 

 
Figure 7.Architecture of the state traversal machine. 
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State 26 represents two different states (state 2 and state 6) and state 37 represents two different states 

(state 3 and state 7).The figure 7 shows that directly merging similar states leads to an erroneous state machine. 

To have a correct result, when state 26 is reached, a mechanism is needed to understand in the original AC state 

machine whether it is state 2 or state 6. Similarly, when state 37 is reached, a mechanism is needed to know in 

the original AC state machine whether it is state 3 or state 7.In this example, state 2 or state 6 is differentiated if 

memorize the precedent state of state 26. If the precedent state of state 26 is state 1, in the original AC state 

machine, it is state 2. On the other hand, if the precedent state of state 26 is state 5, the original is state 6.  

 

X. RESULTS & DISCUSSIONS 
Outputs of these above mentioned was simulated using Modelsim 6.1f software.  

A. SRAM 

The TCAM simulation waveform is shown in Figure 8. For SRAM simulation different inputs  have to 

be forced. Modelsim 6.3f  is a software which is used to simulate the SRAM coding. SRAM has different inputs 

and outputs. By forcing the SRAM input value different SRAM output is obtained. 

 

 
Figure 8. Simulated Output of SRAM 

B.TCAM 

The TCAM simulation waveform is shown in Figure 9.By forcing different values to the current state and input, 

different TCAM output is obtained. In this waveform, the current state is 1010 and the input is forced as e. 

 

 
Figure 9. Simulated Output of TCAM C.Multipattern Matching 

 

The Multipattern matching simulation waveform is shown in Figure 10. In Multipattern matching, the 

proposed clock is forced to a constant value and the proposed input is forced to certain 4-bit values. In this 

waveform, the clock value is forced to 1 and the proposed input is forced to apqr. 
 

 
Figure 10. Simulated Output of Multipattern matching 

 

The proposed output is the given pattern xyapq is matched. Based on the input values, the output 

pattern is either matched or not matched. So different input values are given and the output waveform is 

obtained. 
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XI. CONCLUSION 
In this work, a covered state encoding scheme for the TCAM-based implementation of Aho-

Corasickalgorithm, which is a multiple pattern matching algorithm widely used in network intrusion detection 

systems. The covered state encoding takes advantage of “don’t care” feature of TCAMs and information of 
failure transitions is implicitly captured in the covered state encoding. The use of covered state encoding is the 

failure transitions do not need to be implemented as TCAM entries since all the states in the failure transition 

path can be  simultaneously examined. 

The covered state encoding requires the smaller number of TCAM entries than other schemes and the 

failure transitions are not needed. The time complexity of the algorithm building TCAM entries using the 

covered state encoding is O(n log n), where n is the number of states. Thus, the covered state encoding enables 

an efficient TCAM-based implementation of a multipattern matching algorithm. In Proposed system,the 

memory requirement is less and the pattern matching is high due to the Merge Finite State Automata and the 

pattern matching is done at high speed. 
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